
大
纲 前言

◼为什么需要“大规模计算” [HPC, DL, Business platform system, Cloud已经合流]

➢导入 – 科学计算(天气预报)，DL, 互联网平台(Google, Amazon, Alibaba, MeiTuan, …)

基础篇
◼ 并发程序的样子 – Divide & Conquer, Model & Challenges, PCAM, Data/Task, …

➢天气预报的计算

◼ 运行环境

➢硬件 – 自己梳理的3个方案 – Shared/Unshared Memory, Hybrid

➢系统软件 – 协议栈, Modern OS, Distributed Job Scheduler, GTM等

算法级篇
◼ OpenMP, MPI, CUDA (DL的实现), Big Data 中的MR/Spark等 (只涉及在Big Data SDK之上的编
程；大数据本身的介绍放到后一部分)

系统级篇 – 互联网平台的实现

◼ “秒杀”的技术架构

◼ 计算广告

◼ 系统架构 (HTAP等)

➢ Flink, ClickHouse, MaxCompute, ELK …



7

Chapter 4: Distributed OS

Support the execution of many execution units – parallel or 

distributed 

⚫OS’s Primary function is to support the execution of many (distributed) 
programs - Protocols 

➢Resource availability & Dispatching

➢Successful cooperation – circumstance is stable or not

⚫Evolution of related frameworks/platforms

➢From Amoeba [变形虫] to Micro-services [微服务]

⚫Other large scale computing systems



8

Parallel program on distributed system (with many computers)

 (like Cluster)

◼ 2 main architectures in distributed computing 



9

Overlay network

For PCs as computers or containers,  they are usually configured in 

advance by developers

Internet

End systems

a TCP thru the Internet
We could compose a system 

by configuring IP addressees 

of the computers scattered 

physically around the world 

10.1.0.121

110.11.0.12

110.11.10.112

202.205.101.184



10

There are many other systems following similar ideas 

◼DNS, P2P

◼Storage systems, Cache, 

◼Business systems (discussed in later chapter)

◼…



11

分布式数据管理 – 之我的理解

沿用前面关于分布式软件的通用结构，分布式数据管理系统(应该涵盖 NoSQL, NewSQL

，以及传统数据库管理系统的分布式化)既要满足数据管理的规则，也要体现分布式的特点

数据管理
◼ 多用户并发访问

◼ SQL仍然发挥作用(虽然有NoSQL的过渡，但在NewSQL又把NoSQL纳入SQL的支持了)

◼ 数据的一致性

分布式的特点
◼ 海量数据存取→那么数据必然是分布式存储，也就意味着SQL
需要分布式执行

◼ 容错 (Fault Tolerance) →保障数据安全，思路也就是冗余而已；
并且记录数据处理的动态

◼ HA (High Availability) →服务节点也冗余嘛
(自然要保证冗余的服务节点与现活服务节点保持状态一致)

◼ 。。。



12

分布式数据库系统：大数据时代新型数据库技术（
第2版）

于戈申德荣等

2021

机械工业出版社

https://book4you.org/g/%E4%BA%8E%E6%88%88%20%E7%94%B3%E5%BE%B7%E8%8D%A3%E7%AD%89


13

Distributed DBMS – since Mid of 1970s



16

Oracle的分布式在中国

跟阿里的去 IOE，以及国内分布式数据的发展有关？！哈哈



17



18

Now in Big Data & Cloud

This year Google published a white paper 

describing the MapReduce framework, Doug 

Cutting and Mike Cafarella created Apache 

Hadoop. – later Big Data

http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
https://mapr.com/products/apache-hadoop


19



20

Now in Big Data & Cloud



21

云原生数据库：原理与实践（全彩）（博文
视点出品）

李飞飞，周烜，蔡鹏，张蓉，黄贵 ... 著

2022

电子工业出版社

读书-01-云原生数据库：原理与实践(李飞飞).pptx

https://book.jd.com/writer/%E6%9D%8E%E9%A3%9E%E9%A3%9E_1.html
https://book.jd.com/writer/%E5%91%A8%E7%83%9C_1.html
https://book.jd.com/writer/%E8%94%A1%E9%B9%8F_1.html
https://book.jd.com/writer/%E5%BC%A0%E8%93%89_1.html
https://book.jd.com/writer/%E9%BB%84%E8%B4%B5_1.html
https://book.jd.com/publish/%E7%94%B5%E5%AD%90%E5%B7%A5%E4%B8%9A%E5%87%BA%E7%89%88%E7%A4%BE_1.html
读书-01-云原生数据库：原理与实践(李飞飞).pptx


22



23

Even distributed cache

Redis

◼某企业是为城市高端用户提供高品质蔬菜生鲜服务的初创企业，创业初期为快
速开展业务，该企业采用轻量型的开发架构（脚本语言+关系型数据库）研制了一套业
务系统。业务开展后受到用户普遍欢迎，用户数和业务数量迅速增长，原有的
数据库服务器已不能满足高度并发的业务要求。为此，该企业成立了专门的研
发团队来解决该问题。

◼张工建议重新开发整个系统，采用新的服务器和数据架构，解决当前问题的
同时为日后的扩展提供支持。但是，李工认为张工的方案开发周期过长，投入
过大，当前应该在改动尽量小的前提下解决该问题。李工认为访问量很大的只
是部分数据，建议采用缓存工具MemCache来减轻数据库服务器的压力，这
样开发量小，开发周期短，比较适合初创公司，同时将来也可以通过集群进行
扩展。然而，刘工又认为李工的方案中存在数据可靠性和一致性问题，在宕机
时容易丢失交易数据，建议采用Redis来解决问题。在经过充分讨论，该公司
最终决定采用刘工的方案

◼



24

 A very popular use pattern for Redis 

is as an in-memory cache for web 

applications. 

◼ Redis is available as a caching option for 
popular web frameworks such as Django, 
Ruby-on-Rails, Node.js, and Flask. 

◼ As a popular caching technology Redis excels 
in web applications for storing new data while 
evicting stale data. 

◼ For web applications, the cached data can 
range from single HTML character strings, 
widgets, and elements to entire web pages 
and websites.



25



26

They share a lot!

https://community.cloudera.com/t5/Support-Questions/Enabling-namenode-HA/td-p/222695

https://community.cloudera.com/t5/Support-Questions/Enabling-namenode-HA/td-p/222695


27

大数据软件也支持一些编程 –如 Hadoop 上的 MR

Job submission 

node

Slave node

TaskTracker DataNode

HDFS master

JobTracker NameNode

Slave node

TaskTracker DataNode

Slave node

TaskTracker DataNode

Client



28



29



PostgreSQL的外溢，也是受其他领域的影响 – 分布式 (MPP, Cluster), 大数据，云，AI等



31

Non-Relational vs. Relational



32

P2P? – DNS system – 1983

DNS - Domain Name Service

◼Proposed in 1983 by Paul Mockapetris

◼Aims to assign IP with semantic  meaning

01000010.11111001.01011001.01101000

66.249.89.104

Looks 

better, but 

still hard!

www.google.com

Eh, this 

seems 

easy!



33

Internet
DNS server

DNS server

DNS server

DNS server

DNS server

DNS server

No idea

No idea

No idea

Got it!

Hi, 202.205.104.186. The 

IP of www.google.com.cn 

is 203.208.37.104

DNS server

I am 202.205.104.186. I want 

to visit www.google.com.cn. 

What is its IP?



34

P2P is popular
– 1999 Napster to share music

Shawn Fanning



35

• Share Music files, MP3 data

• Nodes register their contents (list of files) and 
IPs with server

• Centralized server for searches

– The client sends queries to the 
centralized server for files of 
interest

– Keyword search (artist, song, album, 

bitrate, etc.)
• Napster server replies with IP address of 

users with matching files

• File download done on a peer to peer basis

• Poor scalability

• Single point of failure

• Legal issues → shutdown



36

Napster: Publish

I have X, Y, and Z!

Publish

insert(X,

123.2.21.23)

...

123.2.21.23



37

Napster: Search

Where is file A?

Query Reply

search(A)

-->

123.2.0.18Fetch

123.2.0.18



38

Chord: Distributed Lookup (Directory) Service

Key design decision

– Decouple correctness from efficiency

Properties 

– Each node needs to know about O(log(M)), where M is the 
total number of nodes

– Guarantees that a tuple is found in O(log(M)) steps

Many other lookup services: CAN, Tapestry, Pastry, 

Kademlia, …



39

Lookup

 Each node maintains 

pointer to its successor 

 Route packet (Key, 

Value) to the node 

responsible for ID using 

successor pointers

 E.g., node=4 lookups 

for node responsible for 

Key=37 

4

20

32
35

8

15

44

58

lookup(37)

node=44 is 

responsible 

for Key=37



40

Stabilization Procedure

Periodic operation performed by each node n to maintain its 

successor when new nodes join the system

n.stabilize()

x = succ.pred;

if (x    (n, succ))

succ = x;      // if x better successor, update 

succ.notify(n); // n tells successor about itself

n.notify(n’)

if (pred = nil or n’ (pred, n))

pred = n’;       // if n’ is better predecessor, update
   

Î

   

Î



41

Joining Operation

4

20

32
35

8

15

44

58

50

Node with id=50 joins 
the ring

Node 50 needs to know 
at least one node 
already in the system

- Assume known node is 
15

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35



42

Joining Operation

4

20

32
35

8

15

44

58

50

n=50 sends join(50) to 
node 15 

n=44 returns node 58 

n=50 updates its 
successor to 58

join(50)

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

succ=58



43

Joining Operation
4

20

32
35

8

15

44

58

50

n=50 executes 
stabilize()

n’s successor (58) 
returns x = 44

pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()

x = succ.pred;

if (x    (n, succ))

succ = x;

succ.notify(n);

   

Î

succ=58



44

Joining Operation
4

20

32
35

8

15

44

58

50

n=50 executes 
stabilize()

x = 44

succ = 58

pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()

x = succ.pred;

if (x    (n, succ))

succ = x;

succ.notify(n);

   

Î

succ=58



45

Joining Operation
4

20

32
35

8

15

44

58

50

n=50 executes 
stabilize()

x = 44

succ = 58

n=50 sends to it’s 
successor (58) 
notify(50)

pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()

x = succ.pred;

if (x    (n, succ))

succ = x;

succ.notify(n);

   

Î

succ=58



46

Joining Operation
4

20

32
35

8

15

44

58

50

n=58 processes 
notify(50)

pred = 44

n’ = 50

pred=nil

succ=58
pred=35

succ=4
pred=44

n.notify(n’)

if (pred = nil or n’ (pred, n))

pred = n’

   

Î

succ=58



47

Joining Operation
4

20

32
35

8

15

44

58

50

n=58 processes 

notify(50)

pred = 44

n’ = 50

set pred = 50

pred=nil

succ=58
pred=35

succ=4
pred=44

n.notify(n’)

if (pred = nil or n’ (pred, n))

pred = n’

   

Î

succ=58

pred=50



48

Joining Operation
4

20

32
35

8

15

44

58

50

n=44 runs 

stabilize()

n’s successor (58) 

returns x = 50

pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()

x = succ.pred;

if (x    (n, succ))

succ = x;

succ.notify(n);

   

Î

succ=58

x=50



49

Joining Operation
4

20

32
35

8

15

44

58

50

n=44 runs 
stabilize()

x = 50

succ = 58

pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()

x = succ.pred;

if (x    (n, succ))

succ = x;

succ.notify(n);

   

Î

succ=58



50

Joining Operation
4

20

32
35

8

15

44

58

50

n=44 runs 
stabilize()

x = 50

succ = 58

n=44 sets succ=50

pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()

x = succ.pred;

if (x    (n, succ))

succ = x;

succ.notify(n);

   

Î

succ=58

succ=50



51

Joining Operation
4

20

32
35

8

15

44

58

50

n=44 runs stabilize()

n=44 sends 

notify(44) to its 

successor 

pred=nil

succ=50
pred=35

succ=4
pred=50

n.stabilize()

x = succ.pred;

if (x    (n, succ))

succ = x;

succ.notify(n);

   

Î

succ=58

notify(44)



52

Joining Operation
4

20

32
35

8

15

44

58

50

n=50 processes 
notify(44)

pred = nil

pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)

if (pred = nil or n’ (pred, n))

pred = n’

   

Î

succ=58

notify(44)



53

Joining Operation
4

20

32
35

8

15

44

58

50

n=50 processes 
notify(44)

pred = nil

n=50 sets pred=44

pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)

if (pred = nil or n’ (pred, n))

pred = n’

   

Î

succ=58

notify(44)

pred=44



54

Joining Operation (cont’d)

4

20

32
35

8

15

44

58

50

This completes the joining 

operation!

succ=58

succ=50

pred=44

pred=50



55

Achieving Efficiency: finger tables

80 + 20
80 + 21

80 + 22
80 + 23

80 + 24

80 + 25
(80 + 26) mod 27 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=                          )2(mod2 min +

i   ft[i]

0  96

1  96

2  96

3  96

4  96

5  112

6  20

Finger Table at 80

32

45
80

20

112

96



56

Achieving Fault Tolerance for Lookup Service

To improve robustness each node maintains the k (> 1) 

immediate successors instead of only one successor

In the pred() reply message, node A can send its k-1 

successors to its predecessor B

Upon receiving pred() message, B can update its 

successor list by concatenating the successor list 

received from A with its own list

If k = log(M), lookup operation works with high 

probability even if half of nodes fail, where M is number of 

nodes in the system



57

Storage Fault Tolerance

 Replicate tuples 

on successor nodes

 Example: 

replicate (K14, V14) 

on nodes 20 and 32

4

20

32
35

8

15

44

58

14 V14

63 0

14 V14

14 V14



58

Storage Fault Tolerance

 If node 15 fails, no 

reconfiguration 

needed

Still have two replicas 

All lookups will be 

correctly routed

Will need to add a 

new replica on node 

35

4

20

32
35

8

15

44

58

14 V14

63 0

14 V14

14 V14



59

Iterative vs. Recursive Lookup

Iteratively: 

– Example: node 44 
issue query(31)

Recursively

– Example: node 44 
issue query(31)

4

8

15

32
35

50

58

44

25

25

32
4

8

15

32
35

50

58

44

25
32



60

Others – Zookeeper, Flink, Clickhouse

Zookeeper 

◼A highly-available service for coordinating  processes of distributed 
applications.

✓Developed at Yahoo! Research

✓Started as sub-project of Hadoop, now a top-level  Apache project

◼Motivation

➢In the past: a single program running on a single computer with a single CPU

➢Today: applications consist of independent programs  running on a 

changing set of computers

➢Difficulty: coordination of those independent programs

➢Developers have to deal with coordination logic and application logic at 

the same time

✓ZooKeeper: designed to relieve developers from  writing coordination logic code

http://zookeeper.apache.org/

http://zookeeper.apache.org/


61

How can a distributed  system look like?

Slave Slave Slave Slave

MASTER

scalability-

+

-

-

simple

coordination performed by the master  

single point of failure



62

How can a distributed  system look like?

scalability is still an issue-

+ not a single point of failure anymore



63

How can a distributed  system look like?

+ scalability



64

Zookeeper’s architecture – a cluster of nodes

ZAB is used as Consensus protocol



65

ZooKeeper terminology

Client: user of the ZooKeeper service

Server: process providing the 

ZooKeeper service

znode: in-memory data node in 

ZooKeeper,  organised in a 

hierarchical namespace (the data

tree)

Update/write: any operation which 

modifies the state  of the data tree

Clients establish a session when 

connecting to  ZooKeeper



67

ZooKeeper’s data model:  filesystem

znodes are organised in a hierarchical namespace

znodes can be manipulated by clients through the  ZooKeeper

API

znodes are referred to by UNIX style file system

/

/app2/app1

/app1/p_3/app1/p_1 /app1/p_2
All znodes store data (file like) & can have

children (directory like).



68

A few implementation details

ZooKeeper data is replicated on each server that  composes 

the service replicated across  
all servers

(in-memory)

write request requires  
coordination between servers

updates first  
logged to disk;  
write-ahead log  
and snapshot  
for recovery

Source: http://bit.ly/13VFohW

http://bit.ly/13VFohW


69



77

Others – Zookeeper, Flink, Clickhouse

What is Apache Flink?

Everything Streams

Batch Processing

process static and

historic data

Data Stream 

Processing

realtime results

from data streams

Event-driven

Applications

data-driven actions

and services

Stateful Computations Over Data Streams



78

Apache Flink in a Nutshell

Queries

Applications

Devices

etc.

Database

Stream

File / Object

Storage

Stateful computations over streams

real-time and historic

fast, scalable, fault tolerant, in-memory,

event time, large state, exactly-once

Historic

Data

Streams

Application



79

Powerful Abstractions

Process Function (events, state, time)

DataStream API (streams, windows)

Stream SQL / Tables (dynamic tables)

Stream- & Batch 

Data Processing

High-level

Analytics API

Stateful Event-

Driven Applications

val stats = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { … }

out.collect(…) // emit events
state.update(…) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

}

Layered abstractions to

navigate simple to complex use cases



80

https://www.modb.pro/db/69182

https://www.modb.pro/db/69182


81



82



83

Others – Zookeeper, Flink, Clickhouse

https://blog.csdn.net/weixin_39025362/article/details/114114191

https://blog.csdn.net/weixin_39025362/article/details/114114191


84

https://blog.csdn.net/weixin_39025362/article/details/114114191

https://blog.csdn.net/weixin_39025362/article/details/114114191


85

https://blog.csdn.net/weixin_39025362/article/details/114114191

https://blog.csdn.net/weixin_39025362/article/details/114114191


86

https://blog.csdn.net/weixin_39025362/article/details/114114191

https://blog.csdn.net/weixin_39025362/article/details/114114191


87

使用 ClickHouse 来分析处理每秒 600 万 HTTP 请求
◼之前的数据管道

https://translation.meow.page/post/http-analytics-for-6m-

requests-per-second-using-clickhouse/

https://translation.meow.page/post/http-analytics-for-6m-requests-per-second-using-clickhouse/


88

使用 ClickHouse 来分析处理每秒 600 万 HTTP 请求
◼全新的数据管道

https://translation.meow.page/post/http-analytics-for-6m-

requests-per-second-using-clickhouse/

https://translation.meow.page/post/http-analytics-for-6m-requests-per-second-using-clickhouse/


89

https://translation.meow.page/post/http-analytics-for-6m-

requests-per-second-using-clickhouse/

https://translation.meow.page/post/http-analytics-for-6m-requests-per-second-using-clickhouse/


90

https://blog.csdn.net/weixin_39025362/article/details/114114191

https://blog.csdn.net/weixin_39025362/article/details/114114191


91

ClickHouse原理解析与应用实践

朱凯

2020

北京华章图文信息有限公司

https://zh.book4you.org/g/%E6%9C%B1%E5%87%AF%20%5b%E6%9C%B1%E5%87%AF%5d

